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A unique stagnation condition is derived as a guide for analysing systems of 
combined or branched flows through the use of the free-streamline theory and 
the Schwarz-Christoffel transformation. Moreover, the physical significance of 
such a condition is illustrated through its application to the analysis of the 
penetration and deflexion of jets normal to a bounded stream. 

1. Introduction 
Combining or branching flows in channels with or without free surfaces offer 

considerable complications (in fact, topological ambiguities), which are not easily 
surmounted. Ordinarily, the specification of the directions of flow in all branches, 
the positions of all stagnation points, and the velocity of one point in the channel 
(usually the upstream velocity in one of the channels) is sufficient to define the 
flow uniquely. If the velocities or the flow rates are prescribed at more points, 
then the stagnation points must be free to assume their appropriate positions, 
otherwise the flow will be overdetermined. In  viscous flows in channels with 
properly rounded wedges, the uniqueness of the flow is maintained by the fact 
that the stagnation points tend to move to the points of maximum curvature on 
the wedges under the action of viscosity. If there are sharp corners asymmetrically 
placed in the flow, the stagnation points may assume positions which lead to 
separation and give rise to various types of flows such as Mestschersky-type 
flows, Kirchhoff-type flows, etc. (see e.g. Robertson 1965, p. 532). We must, 
therefore, assume that the stagnation points coincide with the sharp corners. 
This behaviour is illustrated in figure 1, which depicts both the physical plane 
and the transformation planes for a jet penetrating into a bounded stream. 
Clearly, the specification of velocities in both channels, the channel geometry, 
and the stagnation point render the flow overdetermined. This results from the 
fact that the common streamline BE may approach the stagnation point B in 
an infinite variety of directions. If EFG corresponds t o  the dividing streamline 
on the Q plane (figure l ( b ) ) ,  the u component of velocity will vanish before v 
if the stagnation point B is approached. Similarly, if EHK corresponds to the 
dividing streamline, v will vanish before u, leading to a velocity or pressure dis- 
continuity in the vicinity of the stagnation point. Thus a stagnation condition 
has to be specified so that u and v become identical and vanish simultaneously 
as R approaches B, i.e. the common streamline bisects the wedge a t  B. Such 
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FIGURE 1. A typical combining flow and the transformation planes. 

(a )  Physical plane, ( b )  Q plane, (c) t plane. 

a condition renders the solution unique. Its derivation for a general flow situation 
and application t o  the particular flow shown in figure 1 constitute the purpose 
of the paper. 

2. Derivation of the stagnation condition 

physical x plane. The use of the transformation 
Consider a divided or combined flow with straight solid boundaries in the 

!2 = -lng/y+iB, (1) 

where p = lu+ivl, 8 the inclination of q measured from the x axis, and J$ the 
reference velocity, transforms the solid boundaries into horizontal lines and the 
free streamlines into vertical lines in the Q plane. The stagnation point B is at 
infinity along the real axis. 

The flow in the !2 plane may be transformed into either the upper or the lower 
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half of another plane (called the t plane) through the use of the Schwarz- 
Christoffel transformation 

n 
Q = [Mn(t-t,)-a.indt+N. 

As many factors (t  - t,) are introduced into the transformation as there are 
vertices of the polygonal boundary in the C2 plane. The value o f t ,  is the locus of 
the transformed point on the real axis of the t plane, and a, is the exterior angle 
of the polygon a t  that point in the Q plane. Three of the t, values can be assigned 
arbitrarily and the remainder must be given parametric values to be evaluated 
in terms of given quantities, along with M and N ,  from the integrated function. 
Points for which t, is infinity need not be introduced no matter what the value 
of a,. 

The stagnation point which is at  infinity in the Q plane is ordinarily placed at 
t = co for the purpose of eliminating the corresponding (t - t,) factor in the 
Schwarz-Christoffel transformation. The advantages of such a choice are con- 
siderable and may often mean the difference between a closed-form solution and 
numerical integration of the Q(t) function. Needless to say, the subsequent 
success with the analysis depends to a great extent on the degree of simplicity 
or complexity of the Q(t) function, since the degree of difficulty of the various 
transformations depends in general on the number of discontinuities in the 
flow: sources, sinks, doublets, stagnation points, etc. The placing of the stagna- 
tion point at t = +CQ, however, does introduce a special problem and require 
that a separate stagnation condition be satisfied. In  fact, it is the derivation of 
this special condition that prompted the present work. 

The flow in the t plane is in general comprised of sources, sinks, and doublets 
with strengths Q, and pk. In  accordance with the sign convention used here, 
Q, is taken positive for a sink and negative for a source. Then the potential 
function w(t) may be written as 

I)  m 

The velocity in the t plane is given by 
n m 

1 1 
awlat = - + iv = - c p,(t - t p  + X ( Q , / ~ )  (t - t r y .  (4) 

At t = +_ 00, i.e. for any point so placed in the t plane, dw/dt = 0 automatically. 
In  other words, the velocity a t  the stagnation point approaches zero regardless 
of the way the stagnation streamline ERB (figure 1 (a) )  approaches the stagna- 
tion point B. Thus a condition has to be formulated for which the stagnation 
streamline bisects the wedge or the u and v components of velocity at  the vertex 
of the wedge vanish simultaneously. 

m m 

1 2 
R'ewriting (4) by noting that C Q, = 0 or Q1 = - Q,, one has 
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Let us now assume that the point t, corresponding to the stagnation point is 
located at a finite point t = to. Then the stagnation condition (dw/dt)t=to = 0 
reduces to 

Simplifying, one has 

Now multiplying with (to-tl)  (to-t,) where p is a particular value of r ,  (7)  
becomes 

m n 

2 1 
X QAtr-tJ ( t o -  t p ) / ( t o -  t r )  -n C i ~ d t o  -t l)  ( t o  - t p ) / ( t o  - t d 2  = 0. (8) 

Equation (8) would have been the necessary stagnation condition had the stagna- 
tion point been placed at t = to + 00. Now letting to + f 00, one has 

m 

2 
or, by noting once again that Q1 = - Z Q,, one finally has 

Equation (10) is the special stagnation condition sought. It should be noted that 
in the physical plane Q, = h, where V ,  and h, are the corresponding velocities 
and channel or asymptotic free-jet widths respectively. Consequently, (lo), as 
written below, places an additional restriction on the flow rates and the location 
of the singularities in the t plane, 

Evidently, (10) could have also been derived by requiring that u and v become 
identical and vanish simultaneously as the common streamline approaches the 
stagnation point at the vertex of the wedge. Writing 

(12) t - t, = A, exp (ivr,) and t - t ,  = A, exp {iv,}, 

where h and v represent respectively the modulus and the argument of a com- 
plex vector for an arbitrary point P above the real axis of the t plane, inserting 
(12) in (4), separating the real and imaginary parts to find u and v, and finally 
writing u = v, one has 
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Now multiplying (1 3) with A;, where p is a particular value of r ,  and noting that 

Q1 = - 
m 

2 
Q, and A,cos CT, = t ,  - t,, (13) reduces to 

n m 

1 2 
(pk/h~)A~(cos20i,-sin 2vk)+x ~ Q ~ ( ~ , - A 1 ) A ~ J A ~ ~ J s i n v r  

m 

1 
* C (QrA;/nG) (tl-tr) = 0. (14) 

The second summation in (14) is zero, since A, sin IT, = A, sin B~ for a given point 
P i n  the t plane. Now letting h --f co and B -+ in in (la), as the point P approaches 
infinity or the commom streamline approaches the stagnation point, (14) re- 
duces to (10). It is evident from the foregoing derivation that the flow on both 
sides of the wedge becomes identical in the immediate vicinity of the wedge 
and that the wedge angle (a = $71 in the physical plane and n in the t plane) is 
bisected by the common streamline. 

I n  the case of impinging free jets, there is no doublet, and V ,  = 5 = constant 
along all free surfaces. Thus, (1 I )  reduces to 

m 

1 
h,t, = 0. 

I n  this special case, the boundary of the hodograph plane is a circle (see Birkhoff & 
Zarantonello 1957, p. 48), i.e. t, = exp{ia,}, and (15) reduces to 

m m. 

1 1 
h, cos a, = C h, sin a,, 

where a, is the inclination of the rth jet with respect to the x axis and h, the 
asymptotic width of the rth jet. 

Equation (16) is equivalent to the condition that the stagnation point be 
located at the centre of the circle where there are no other singularities by virtue 
of the conservation of mass, i.e. Ch, = 0. Since (16) is also equivalent to the 
conservation of momentum, one ends up with i + 2  equations between i f 3  
unknowns. Thus, contrary to expectation, the resulting flow is indeterminate, 
except in the case of parallel impinging jets (Birkhoff & Zarantonello 1957, p. 48). 
For the general flows considered herein, however, (1  1) is not equivalent to the 
conservation of momentum. I n  other words, it is a kinematic flow condition not 
derivable from dynamic considerations of energy and momentum. Hence, the 
problem is determinate and there is a unique relationship between the magnitude 
of combining or branching flows and the geometry of the system as long as no dis- 
continuity is permitted in velocity across the common streamline. Finally, (1  1) 
permits one to  determine the strength of the doublets to be placed in the t plane for 
flows combining with or bifurcating from an otherwise unbounded uniform Bow. 

3. Application of the stagnation condition to a jet penetration problem 
The flow boundary considered herein consists of two normally impinging two- 

dimensional inviscid jets of finite extent (figure l ( a ) ) ,  a vortex sheet of free 
streamline, and a common streamline extending from the stagnation point into 
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the combined uniform flow. The determination of the contraction of the combined 
jets, free-streamline shape, pressure distribution, etc., constitutes the basis of 
the problem. 

The pressure and hence the velocity along the external free streamline are 
assumed to remain constant. In real fluids, this boundary could be the outer 
surface of a separation bubble comprised of the same fluid, an entrainement 
interface between the deflected jet and the ambient fluid, or a surface of density 
and viscosity discontinuity if the physical characteristics of the jets are dif- 
ferent. In  any case, the complex problems associated with the determination of 
the pressure along the bubble boundary, entrainement of the ambient fluid into 
the jet, and of the reattachment of the combined flow to an adjacent boundary 
cannot yet be considered without introducing into the analysis a number of 
empirical parameters (Sarpkaya 1972a, pp. R2-1, R2-21). 

The common streamline passing through the stagnation point will ordinarily 
be a line of velocity discontinuity and will give rise to mixing, shear-layer 
generated noise, and energy dissipation unless the stagnation condition derived 
above is satisfied. I n  other words, the conditions leading to a discontinuity 
surface must be analytically excluded from the inviscid flow analysis. 

The aforementioned assumptions and the continuity relationship, together 
with the appropriate conformal transformations, suffice for the determination 
of the characteristics of the combined efflux. 

If z and w(z)  are used for the complex variable and the complex potential, 
then the variable 6 defined as dw/dz is given by 

The flow region in the physical plane (figure 1 (a ) )  can be mapped onto a corre- 
sponding region in the Q plane, as indicated in figure 1 (b) ,  through 

6 = -u+iv = -qexp{-iO). ( 1 7 )  

!2 = ln(-J$/c) = -In(qK)+iB. (18) 

The polygonal boundary shown in figure 1 ( b )  may be transformed into the entire 
real axis of the t plane (figure 1. ( c ) ) ,  using the Schwarz-Christoffel transformation 
given by (2 ) .  Thedesired mapping function between Q and t for the problemunder 
consideration becomes 

The evaluation of this integral and the use of the t, values assigned to the points D 
and E in the t plane yield 

The distances ‘a’ and ‘c’ shown in the t plane can be expressed as a function of 
the velocity ratios. To this end, the expression for Q is introduced in (20) and 
the resulting equation evaluated at points A and C, so that 

i2 = NJ( t2 -  l ) d d t + N .  ( 1 9 )  

!2 = ich-lt. (20) 

or (J$/Vc)2 = c + (c2- I)-$, (J$/VA)2 = a + (a2- I)-*. (22) 

w(t)  = [Knln (t  + I )  - V’ mln (t + a)  -Vcb In (t - c)]/n-. 

The complex potential w(t) can be expressed in terms o f t  by the method of 
sources and sinks: 

(23 ) 
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Furthermore, t is related to 0 along the free streamlines, where SZ = i8 = &h-9, by 

t = cos 26, cos e = [(I + t ) /~]- t ,  sin 0 = [(I - t)/2]-+. (24) 

The appropriate distances in the physical plane and the contraction coefficient 
may be evaluated by noting that 

t = - 1  

ax = m+s, (25) n+ sf-1 

where the integral in (25) may be written, using (23) and (24), as 

Evaluating the integrals in (26), combining with (25 ) ,  and rearranging, one 
finallv has 

and the function P(a, c) is given by 

F(a,c)  = - 242 - 2(a - i)+ tan-1 
a-I  

(29) 

V,m+V,b = Fn. (30) 

The premise of continuity, implicit in the above development, can be stated as 

The parametric equations for the free streamline emanating from the point D 
may be obtained in a straightforward manner from 

1 t l + t  t a w  
x - x D  = -qJ1 (T) zdt 

and 

through the use of (23). 
Although (27)-(32) determine the characteristics of the flow field in terms of 

the parameters ' a '  and ' c 7  or in terms of b/m, s/m, and V,/V,, the solution is not 
unique and is not necessarily physically applicable. The multiplicity of the solu- 
tion stems, as previously discussed, from the fact that the common streamline 
can emanate from the stagnation point B in an infinite variety of directions while 
satisfying the condition that limdwldt -+ 0, as seen from (23). The solution may 

be rendered unique and the discontinuity across the common streamline be 
eliminated by applying the stagnation condition given by (1 I) as 

t+m 

- V, bc + V, ma - qn = 0, 

Ve',b/&~,m = QR = &,/&A = ( a - l ) / ( c +  1). 

(33) 

(34) 

or, combining with the equation of continuity (30), one has 

Evidently, there is only one velocity or flow ratio for a given geometry (b/m 
and s/m) which satisfies the above condition. 
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FIGURE 2. The jet geometry required for the elimination of the velocity 
discontinuity for various flow ratios. 

slm 

FIGURE 3. Velocity ratios for the flows and geometries shown in figure 2. 

Results obtained by computer are presented in graphical form in figures 2-4. 
Figure 2 shows the variation of b/m with s/m for constant values of QR. The 
asymptotic values of b/m, obtained from (21), (22) and (34) are given by 

(b/m)mln = & R / { ( ~ & R  -k 1) -t [ ( ~ Q R  $- - 11*)*- (35) 
Figure 3 shows the variation of b/m with S/m for constant values of the velocity 
ratio V,/V, and figure 4 shows the variation of the contraction coefficient Cc with 
blm for constant values of QR.  
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FIGURE 4. The contraction coefficient C, against blm for various values of QR. 

A careful examination of figures 2-4 reveals several facts of major importance. 
First, the achievement of a smooth impingement with no velocity discontinuity 
requires the use of relatively small control nozzles (i.e. very small b/m values), 
and hence fairly large velocity ratios. Second, there is only one particular velocity 
or flow ratio for a given set of specific values of the jet geometry. Any variation 
in input-flow ratio from that predicted on the basis of no velocity discontinuity 
will result in the development of free-shear layers of varying intensity and in 
unwanted noise and energy dissipation in the flow. Finally, it is apparent from 
figure 4 that the contraction coefficient decreases, i.e. the acceleration of the 
combined jet increases, as b/m and/or QR increases. 

4. summary 
A unique stagnation condition has been derived as a guide for analysing systems 

of combined or divided flows through the use of the free-streamline theory and 
the Schwarz-Christoffel transformation. The physical significance of such a con- 
dition has been illustrated through its application to the analysis of the penetra- 
tion and deflexion of jets normal to a bounded stream. Additional applications 
are given in Sarpkaya (1972b) in a detailed study of the interaction of semi- 
confined turbulent jets. 

The work described herein is part of the investigation sponsored by the U.S. 
Army Research Office, Durham, N.C. 
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